中小学数学教学网 加入收藏  -  设为首页
您的位置:中小学数学教学网 > 大学数学 > 正文
【高中数学必修一知识总结 】:今天小数助手分享的内容是——高一数学必修一知识点总结归纳,,,,高一,年级,数学,必修,知识点,梳理,小数将详细内容整理如下: 高一数学必修一知识点总结归纳
高一数学必修一知识点总结归纳
提示:

高一数学必修一知识点总结归纳

  高中数学是很多同学们头痛的科目,如何学好数学,知识点有哪些。以下是由我为大家整理的“高一数学必修一知识点总结归纳”,仅供参考,欢迎大家阅读。    高一数学必修一知识点总结归纳    【第一章:集合与函数概念】   一、集合有关概念   1.集合的含义   2.集合的中元素的三个特性:   (1)元素的确定性如:世界上的山   (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}   (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合   3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}   (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}   (2)集合的表示方法:列举法与描述法。   注意:常用数集及其记法:XKb1.Com   非负整数集(即自然数集)记作:N   正整数集:N*或N+   整数集:Z   有理数集:Q   实数集:R   1)列举法:{a,b,c……}   2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2}   3)语言描述法:例:{不是直角三角形的三角形}   4)Venn图:   4、集合的分类:   (1)有限集含有有限个元素的集合   (2)无限集含有无限个元素的集合   (3)空集不含任何元素的集合例:{x|x2=-5}   二、集合间的基本关系   1.“包含”关系—子集   注意:有两种可能   (1)A是B的一部分,;   (2)A与B是同一集合。   反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA   2.“相等”关系:A=B(5≥5,且5≤5,则5=5)  实   例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”   即:   ①任何一个集合是它本身的子集。AíA   ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)   ③如果AíB,BíC,那么AíC   ④如果AíB同时BíA那么A=B   3.不含任何元素的集合叫做空集,记为Φ   规定:空集是任何集合的子集,空集是任何非空集合的真子集。   4.子集个数:   有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集   三、集合的运算   运算类型交集并集补集   定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.   由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).    【第二章:基本初等函数】   一、指数函数   (一)指数与指数幂的运算   1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.   当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).   当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。   注意:当是奇数时,当是偶数时,   2.分数指数幂   正数的分数指数幂的意义,规定:   0的正分数指数幂等于0,0的负分数指数幂没有意义   指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.   3.实数指数幂的运算性质   (二)指数函数及其性质   1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.   注意:指数函数的底数的取值范围,底数不能是负数、零和1.   2、指数函数的图象和性质    【第三章:第三章函数的应用】   1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。   2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:   方程有实数根函数的图象与轴有交点函数有零点.   3、函数零点的求法:   求函数的零点:   (1)(代数法)求方程的实数根;   (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.   4、二次函数的零点:   二次函数.   1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.  2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.   2)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。   拓展阅读:学习数学的方法   课内重视听讲,课后及时复习   新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。   上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。   特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。   认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。   在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。    适当多做题,养成良好的解题习惯   要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。   对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。   在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。   实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。    调整心态,正确对待考试   首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。   调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。   在考试前要做好准备,练练常规题,把自己的思路展开,在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要使自己的水平正常甚至超常发挥。

高一数学必修一知识点整理大全
提示:

高一数学必修一知识点整理大全

数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。下面是我给大家带来的 高一数学 必修一知识点整理大全,以供大家参考! 高一数学必修一知识点整理大全 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:{…}如{我校的 篮球 队员},{太平洋大西洋印度洋北冰洋} 1.用拉丁字母表示集合:A={我校的篮球队员}B={12345} 2.集合的表示 方法 :列举法与描述法。 注意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N_或N+整数集Z有理数集Q实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a:A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2} 4、集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA 2.“相等”关系(5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0}B={-11}“元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B ①任何一个集合是它本身的子集。A?A ②真子集:如果A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA) ③如果A?BB?C那么A?C ④如果A?B同时B?A那么A=B 3.不含任何元素的集合叫做空集,记为Φ 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 三、集合的运算 1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集. 记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集与并集的性质:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A A∪φ=AA∪B=B∪A. 4、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作:CSA即CSA={x?x?S且x?A} (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。 (3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U 高中数学知识点 总结 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数 28=2×2×7 几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。 公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况: 1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。 当合数不是质数的倍数时,这个合数和这个质数互质。 两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。 如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。 如果两个数是互质数,它们的最大公因数就是1。 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、 ?? 3的倍数有3、6、9、12、15、18 ?? 其中6、12、18??是2、3的公倍数,6是它们的最小公倍数。。 如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。 如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。 几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。 高一数学知识点总结 1.函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x); (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数); (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0); (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2.复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称; 4.函数的周期性 (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2|a|的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4|a|的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数; (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数; 5.方程k=f(x)有解k∈D(D为f(x)的值域); 6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min; 7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1); (3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a>0,a≠1,N>0); 8.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象; 9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。 10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A). 11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系; 12.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题 13.恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解; 数学必修一知识点整理 集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 注意:常用数集及其记法:XKb1.Com 非负整数集(即自然数集)记作:N 正整数集:N_或N+ 整数集:Z 有理数集:Q 实数集:R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-3>2},{x|x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合 二、集合间的基本关系 1.“包含”关系—子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA) ③如果A?B,B?C,那么A?C ④如果A?B同时B?A那么A=B 3.不含任何元素的集合叫做空集,记为Φ 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 4.子集个数: 有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集 三、集合的运算 运算类型交集并集补集 定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}. 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}). 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_. 当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand). 当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。 注意:当是奇数时,当是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.实数指数幂的运算性质 (二)指数函数及其性质 1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 函数的应用 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即: 方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: 求函数的零点: 1(代数法)求方程的实数根; 2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数. 1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. 2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点. 高一数学必修一知识点整理大全相关 文章 : ★ 高中数学必修1知识点总结 ★ 高一数学必修一知识点归纳 ★ 高一数学必修一知识点汇总 ★ 高一数学知识点汇总大全 ★ 高中数学高一数学必修一知识点 ★ 高一数学必修一知识点总结归纳 ★ 高中数学必修一知识点总结 ★ 高一数学必修1知识点归纳 ★ 高一数学必修一知识点总结 ★ 高一数学必修一集合知识点归纳 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高一数学必修一知识点总结
提示:

高一数学必修一知识点总结

  数学是比较容易得分的科目之一,那么高一数学必修一知识点有哪些呢。以下是由我为大家整理的“高一数学必修一知识点总结”,仅供参考,欢迎大家阅读。    第一章 集合与函数概念   一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性   说明:   (1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。   (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。   (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。   (4)集合元素的三个特性使集合本身具有了确定性和整体性。   3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}   2.集合的表示方法:列举法与描述法。   注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,   如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。   描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}   4、集合的分类:   1.有限集 含有有限个元素的集合 2.无限集 含有无限个元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5}二、集合间的基本关系   1.“包含”关系—子集注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同”   结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,   即:A=B ① 任何一个集合是它本身的子集。AíA   ②真子集:如果AíB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)   ③如果 AíB, BíC ,那么 AíC   ④ 如果AíB 同时 BíA 那么A=B   3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的运算 1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集. 记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.   4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作: CSA 即 CSA ={x | x?S且 x?A}   (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。   (3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ   ⑶(CUA)∪A=U   二、函数的有关概念   1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域   . 注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;   3 函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;   (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义. (又注意:求出不等式组的解集即为函数的定义域。) 构成函数的三要素:定义域、对应关系和值域 再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) (见课本21页相关例2) 值域补充 (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象. C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A } 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。 (2) 画法 A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来. B、图象变换法(请参考必修4三角函数) 常用变换方法有三种,即平移变换、伸缩变换和对称变换   (3)作用: 1、直观的看出函数的性质; 2、利用数形结合的方法分析解题的思路。提高解题的速度。 发现解题中的错误。 4.快去了解区间的概念   (1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.   5.什么叫做映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B” 给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象   说明:函数是一种特殊的映射,映射是一种特殊的对应   ,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:   (Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;   (Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。   常用的函数表示法及各自的优点:   1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;   2 解析法:必须注明函数的定义域;   3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;   4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值   补充一:分段函数 (参见课本P24-25) 在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。   分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.   (1)分段函数是一个函数,不要把它误认为是几个函数;   (2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 补充二:复合函数 如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。   例如: y=2sinX y=2cos(X2+1)   7.函数单调性   (1).增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.   注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质   2 必须是对于区间D内的任意两个自变量x1,x2;当x1   (2) 图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.   (3).函数单调区间与单调性的判定方法 (A)   定义法: 1 任取x1,x2∈D,且x1   8.函数的奇偶性 (1)偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.   注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).   (3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称.   总结:利用定义判断函数奇偶性的格式步骤:   1 首先确定函数的定义域,并判断其定义域是否关于原点对称;   2 确定f(-x)与f(x)的关系;   3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.   首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .   9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)   10.函数最大(小)值(定义见课本p36页)   1 利用二次函数的性质(配方法)求函数的最大(小)值2 利用图象求函数的最大(小)值3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);   如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);   第二章 基本初等函数   一、指数函数 (一)指数与指数幂的运算   1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *. 当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand)   . 当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).   由此可得:负数没有偶次方根;0的任何次方根都是0,   , 2.分数指数幂 正数的分数指数幂的意义,规定: , 0的正分数指数幂等于0,0的负分数指数幂没有意义   指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.   (二)指数函数及其性质   1、指数函数的概念:一般地,函数 叫做指数函数(exponential ),其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1.   2、指数函数的图象和性质 a>1 0   (1)在[a,b]上, 值域是 或 ;   (2)若 ,则 ; 取遍所有正数当且仅当 ;   (3)对于指数函数 ,总有 ;   (4)当 时,若 ,则 ; 二、对数函数 (一)对数 1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)   说明:1 注意底数的限制 ,且 ; 2 ; 3 注意对数的书写格式. 两个重要对数: 1 常用对数:以10为底的对数 ; 2 自然对数:以无理数 为底的对数的对数 . 对数式与指数式的互化 对数式 指数式 对数底数 ← → 幂底数 对数 ← → 指数 真数 ← → 幂 (二)对数的运算性质 如果 ,且 , , ,那么: 1 · + ; 2 - ; 3 . 注意:换底公式 ( ,且 ; ,且 ; ). 利用换底公式推导下面的结论(1) ;(2) . (二)对数函数 1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞). 注意:1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。 如: , 都不是对数函数,而只能称其为对数型函数. 2 对数函数对底数的限制: ,且 . 2、对数函数的性质: a>1 0   (三)幂函数   1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸; (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴. 第三章 函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。 2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即: 方程 有实数根 函数 的图象与 轴有交点 函数 有零点. 3、函数零点的求法: 求函数 的零点: 1 (代数法)求方程 的实数根; 2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数 . 1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点. 2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程 无实根,二次函数的图象与轴无交点。

高一数学必修一知识点总结
提示:

高一数学必修一知识点总结

数学知识点是高考的基础,掌握 高一数学 知识点将对高考复习起到重要作用,高一数学必修一知识点 总结 有哪些你知道吗?一起来看看高一数学必修一知识点总结,欢迎查阅! 高1数学知识点总结 一、集合、简易逻辑(14课时,8个) 1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。 二、函数(30课时,12个) 1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。 三、数列(12课时,5个) 1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。 四、三角函数(46课时,17个) 1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。 五、平面向量(12课时,8个) 1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。 六、不等式(22课时,5个) 1.不等式;2.不等式的'基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。 七、直线和圆的方程(22课时,12个) 1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。 八、圆锥曲线(18课时,7个) 1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。 九、直线、平面、简单何体(36课时,28个) 1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。 十、排列、组合、二项式定理(18课时,8个) 1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。 十一、概率(12课时,5个) 1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。 选修Ⅱ(24个) 十二、概率与统计(14课时,6个) 1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样 方法 ;4.总体分布的估计;5.正态分布;6.线性回归。 十三、极限(12课时,6个) 1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。 十四、导数(18课时,8个) 1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8.函数的最大值和最小值。 十五、复数(4课时,4个) 1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二二项方程的解法。 数学必修一知识点整理集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…}如:{我校的 篮球 队员},{太平洋,大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 注意:常用数集及其记法:XKb1.Com 非负整数集(即自然数集)记作:N 正整数集:N_或N+ 整数集:Z 有理数集:Q 实数集:R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-3>2},{x|x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合 二、集合间的基本关系 1.“包含”关系—子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA) ③如果A?B,B?C,那么A?C ④如果A?B同时B?A那么A=B 3.不含任何元素的集合叫做空集,记为Φ 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 4.子集个数: 有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集 三、集合的运算 运算类型交集并集补集 定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}. 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}). 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_. 当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand). 当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。 注意:当是奇数时,当是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.实数指数幂的运算性质 (二)指数函数及其性质 1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 函数的应用 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即: 方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: 求函数的零点: 1(代数法)求方程的实数根; 2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数. 1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. 2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点. 必修一函数重点知识整理 1. 函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x) ; (2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数); (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0); (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2. 复合函数的有关问题 (1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称; 4.函数的周期性 (1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数; (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数; 5.方程k=f(x)有解 k∈D(D为f(x)的值域); 6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min; 7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1); (3) l og a b的符号由口诀“同正异负”记忆; (4) a log a N= N ( a>0,a≠1,N>0 ); 8. 判断对应是否为映射时,抓住两点: (1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象; 9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。 10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A). 11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系; 12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题 13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解。 高一数学必修一知识点总结相关 文章 : ★ 高一数学必修一知识点汇总 ★ 高中数学必修1知识点总结 ★ 高一数学必修一知识点总结 ★ 高一数学知识点汇总大全 ★ 高一数学必修1对数函数知识点总结 ★ 高一数学必修1函数的知识点归纳 ★ 高一数学必修一知识点总结归纳 ★ 高一数学必修1知识点归纳 ★ 高中数学必修一复习提纲 ★ 高一数学必修1知识整理

高一数学必修一知识点归纳笔记
提示:

高一数学必修一知识点归纳笔记

1.高一数学必修一知识点归纳笔记 篇一   求函数定义域   常见的用解析式表示的函数f(x)的定义域可以归纳如下:   ①当f(x)为整式时,函数的定义域为R.   ②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。   ③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。   ④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。   ⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。   ⑥复合函数的定义域是复合的各基本的函数定义域的交集。   ⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。 2.高一数学必修一知识点归纳笔记 篇二   正棱锥   正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。   正棱锥的性质:   (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。   (2)多个特殊的直角三角形   a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。   b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。 3.高一数学必修一知识点归纳笔记 篇三   定义:   从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。   表达式:   斜截式:y=kx+b   两点式:(y-y1)/(y1-y2)=(x-x1)/(x1-x2)   点斜式:y-y1=k(x-x1)   截距式:(x/a)+(y/b)=0 4.高一数学必修一知识点归纳笔记 篇四   函数的周期性   (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;   (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;   (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;   (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;   (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;   (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数。 5.高一数学必修一知识点归纳笔记 篇五   集合的运算   1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.   记作AB(读作A交B),即AB={x|xA,且xB}.   2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作A并B),即AB={x|xA,或xB}.   3、交集与并集的性质:AA=A,A=,AB=BA,AA=A,A=A,AB=BA.   4、全集与补集   (1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)   (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用U来表示. 6.高一数学必修一知识点归纳笔记 篇六   柱、锥、台、球的结构特征   (1)棱柱:   定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。   分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。   表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。   几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。   (2)棱锥   定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。   分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等   表示:用各顶点字母,如五棱锥   几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。   (3)棱台:   定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。   分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等   表示:用各顶点字母,如五棱台   几何特征:   ①上下底面是相似的平行多边形   ②侧面是梯形   ③侧棱交于原棱锥的顶点   (4)圆柱:   定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。   几何特征:   ①底面是全等的圆;   ②母线与轴平行;   ③轴与底面圆的半径垂直;   ④侧面展开图是一个矩形。   (5)圆锥:   定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。   几何特征:   ①底面是一个圆;   ②母线交于圆锥的顶点;   ③侧面展开图是一个扇形。   (6)圆台:   定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分   几何特征:   ①上下底面是两个圆;   ②侧面母线交于原圆锥的顶点;   ③侧面展开图是一个弓形。   (7)球体:   定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体   几何特征:   ①球的截面是圆;   ②球面上任意一点到球心的距离等于半径。

高一年级数学必修一知识点梳理
提示:

高一年级数学必修一知识点梳理

【 #高一# 导语】进入高中后,很多新生有这样的心理落差,比自己成绩优秀的大有人在,很少有人注意到自己的存在,心理因此失衡,这是正常心理,但是应尽快进入学习状态。 高一频道为正在努力学习的你整理了《高一年级数学必修一知识点梳理》,希望对你有帮助! 1.高一年级数学必修一知识点梳理   1.“包含”关系—子集   注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。   反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA   2.“相等”关系(5≥5,且5≤5,则5=5)   实例:设A={x|x2-1=0}B={-1,1}“元素相同”   结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B   ①任何一个集合是它本身的子集。AíA   ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)   ③如果AíB,BíC,那么AíC   ④如果AíB同时BíA那么A=B   3.不含任何元素的集合叫做空集,记为Φ   规定:空集是任何集合的子集,空集是任何非空集合的真子集。 2.高一年级数学必修一知识点梳理   方程的根与函数的零点   1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。   2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.   3、函数零点的求法:   (1)(代数法)求方程的实数根;   (2)(几何法)对于不能用求根公式的.方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.   4、二次函数的零点:   (1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.   (2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.   (3)△0)恒成立,则y=f(x)是周期为2a的周期函数;   (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;   (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;   (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;   (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;   (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;   5.方程k=f(x)有解k∈D(D为f(x)的值域);   6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;   7.(1)(a>0,a≠1,b>0,n∈R+);   (2)logaN=(a>0,a≠1,b>0,b≠1);   (3)logab的符号由口诀“同正异负”记忆;   (4)alogaN=N(a>0,a≠1,N>0);   8.判断对应是否为映射时,抓住两点:   (1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;   9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。   10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).   11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;   12.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题   13.恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解; 4.高一年级数学必修一知识点梳理   棱锥   棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥   棱锥的的性质:   (1)侧棱交于一点。侧面都是三角形   (2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方   正棱锥   正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。   正棱锥的性质:   (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。   (3)多个特殊的直角三角形   esp:   a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。   b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。 5.高一年级数学必修一知识点梳理   (1)直线的倾斜角   定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α

高中数学必修1知识点总结
提示:

高中数学必修1知识点总结

  知识的总结总是必要的,那么高中数学必修1的知识点同学们总结过吗,如果还没有来得及,就我这里瞧瞧吧。下面是由我为大家整理的“高中数学必修1知识点总结”,仅供参考,欢迎大家阅读。   高中数学必修1知识点总结   一:集合的含义与表示   1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。   把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。   2、集合的中元素的三个特性:   (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。   (2)元素的互异性:一个给定集合中的元素是的,不可重复的。   (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合   3、集合的表示:{…}   (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}   (2)集合的表示方法:列举法与描述法。   a、列举法:将集合中的元素一一列举出来{a,b,c……}   b、描述法:   ①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。   {xR|x-3>2},{x|x-3>2}   ②语言描述法:例:{不是直角三角形的三角形}   ③Venn图:画出一条封闭的曲线,曲线里面表示集合。   4、集合的分类:   (1)有限集:含有有限个元素的集合   (2)无限集:含有无限个元素的集合   (3)空集:不含任何元素的集合   5、元素与集合的关系:   (1)元素在集合里,则元素属于集合,即:aA   (2)元素不在集合里,则元素不属于集合,即:a¢A   注意:常用数集及其记法:   非负整数集(即自然数集)记作:N   正整数集N*或N+   整数集Z   有理数集Q   实数集R   6、集合间的基本关系   (1).“包含”关系(1)—子集   定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。   二、函数的概念   函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A---B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.   (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;   (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.   函数的三要素:定义域、值域、对应法则   函数的表示方法:(1)解析法:明确函数的定义域   (2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。   (3)列表法:选取的自变量要有代表性,可以反应定义域的特征。   4、函数图象知识归纳   (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.   (2)画法   A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。   (3)函数图像平移变换的特点:   1)加左减右——————只对x   2)上减下加——————只对y   3)函数y=f(x)关于X轴对称得函数y=-f(x)   4)函数y=f(x)关于Y轴对称得函数y=f(-x)   5)函数y=f(x)关于原点对称得函数y=-f(-x)   6)函数y=f(x)将x轴下面图像翻到x轴上面去,x轴上面图像不动得   函数y=|f(x)|   7)函数y=f(x)先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)   三、函数的基本性质   1、函数解析式子的求法   (1、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.   (2、求函数的解析式的主要方法有:   1)代入法:   2)待定系数法:   3)换元法:   4)拼凑法:   2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。   求函数的定义域时列不等式组的主要依据是:   (1)分式的分母不等于零;   (2)偶次方根的被开方数不小于零;   (3)对数式的真数必须大于零;   (4)指数、对数式的底必须大于零且不等于1.   (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.   (6)指数为零底不可以等于零,   (7)实际问题中的函数的定义域还要保证实际问题有意义.   3、相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)   4、区间的概念:   (1)区间的分类:开区间、闭区间、半开半闭区间   (2)无穷区间   (3)区间的数轴表示   5、值域(先考虑其定义域)   (1)观察法:直接观察函数的图像或函数的解析式来求函数的值域;   (2)反表示法:针对分式的类型,把Y关于X的函数关系式化成X关于Y的函数关系式,由X的范围类似求Y的范围。   (3)配方法:针对二次函数的类型,根据二次函数图像的性质来确定函数的值域,注意定义域的范围。   (4)代换法(换元法):作变量代换,针对根式的题型,转化成二次函数的类型。   6.分段函数   (1)在定义域的不同部分上有不同的解析表达式的函数。   (2)各部分的自变量的取值情况.   (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.   (4)常用的分段函数有取整函数、符号函数、含绝对值的函数   7.映射   一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:A---B为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)---B(象)”   对于映射f:A→B来说,则应满足:   (1)集合A中的每一个元素,在集合B中都有象,并且象是的;   (2)集合A中不同的元素,在集合B中对应的象可以是同一个;   (3)不要求集合B中的每一个元素在集合A中都有原象。   注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的。所以函数是映射,而映射不一定的函数   8、函数的单调性(局部性质)及最值   (1、增减函数   (1)设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1   (2)如果对于区间D上的任意两个自变量的值x1,x2,当x1   注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种   (2、图象的特点   如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.   (3、函数单调区间与单调性的判定方法   (A)定义法:   任取x1,x2∈D,且x1   作差f(x1)-f(x2);   变形(通常是因式分解和配方);   定号(即判断差f(x1)-f(x2)的正负);   下结论(指出函数f(x)在给定的区间D上的单调性).   (B)图象法(从图象上看升降)   (C)复合函数的单调性   复合函数:如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。   复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”   注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.   9:函数的奇偶性(整体性质)   (1、偶函数   一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.   (2、奇函数   一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.   (3、具有奇偶性的函数的图象的特征   偶函数的图象关于y轴对称;奇函数的图象关于原点对称.   利用定义判断函数奇偶性的步骤:   a、首先确定函数的定义域,并判断其是否关于原点对称;若是不对称,则是非奇非偶的函数;若对称,则进行下面判断;   b、确定f(-x)与f(x)的关系;   c、作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;   若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.   (4)利用奇偶函数的四则运算以及复合函数的奇偶性   a、在公共定义域内,偶函数的加减乘除仍为偶函数;   奇函数的加减仍为奇函数;   奇数个奇函数的乘除认为奇函数;   偶数个奇函数的乘除为偶函数;   一奇一偶的乘积是奇函数;   a、复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇。   注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,   (1)再根据定义判定;   (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;   (3)利用定理,或借助函数的图象判定.   10、函数最值及性质的应用   (1、函数的最值   a利用二次函数的性质(配方法)求函数的(小)值   b利用图象求函数的(小)值   c利用函数单调性的判断函数的(小)值:   如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);   如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);   (2、函数的奇偶性与单调性   奇函数在关于原点对称的区间上有相同的单调性;   偶函数在关于原点对称的区间上有相反的单调性。   (3、判断含糊单调性时也可以用作商法,过程与作差法类似,区别在于作差法是与0作比较,作商法是与1作比较。   (4)绝对值函数求最值,先分段,再通过各段的单调性,或图像求最值。   (5)在判断函数的奇偶性时候,若已知是奇函数可以直接用f(0)=0,但是f(0)=0并不一定可以判断函数为奇函数。(高一阶段可以利用奇函数f(0)=0)。   【篇二】   方程的根与函数的零点   1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。   2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.   3、函数零点的求法:   (1)(代数法)求方程的实数根;   (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.   4、二次函数的零点:   (1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.   (2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.   (3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.   拓展阅读:高一生物必修一知识点总结整理   高一生物必修一走近细胞知识点总结   第一节从生物圈到细胞   1病毒没有细胞结构,但必须依赖(活细胞)才能生存。   2生命活动离不开细胞,细胞是生物体结构和功能的(基本单位)。   3生命系统的结构层次:(细胞)、(组织)、(器官)、(系统)、(个体)、(种群)(群落)、(生态系统)、(生物圈)。   4血液属于(组织)层次,皮肤属于(器官)层次。   5植物没有(系统)层次,单细胞生物既可化做(个体)层次,又可化做(细胞)层次。   6地球上最基本的生命系统是(细胞)。   7种群:在一定的区域内同种生物个体的总和。例:一个池塘中所有的鲤鱼。   8群落:在一定的区域内所有生物的总和。例:一个池塘中所有的生物。(不是所有的鱼)   9生态系统:生物群落和它生存的无机环境相互作用而形成的统一整体。   10以细胞代谢为基础的生物与环境之间的物质和能量的交换;以细胞增殖、分化为基础的生长与发育;以细胞内基因的传递和变化为基础的遗传与变异。   第二节细胞的多样性和统一性   一、高倍镜的使用步骤(尤其要注意第1和第4步)   1、在低倍镜下找到物象,将物象移至(视野中央)   2、转动(转换器),换上高倍镜。   3、调节(光圈)和(反光镜),使视野亮度适宜。   4、调节(细准焦螺旋),使物象清晰。   二、显微镜使用常识   1、调亮视野的两种方法(放大光圈)、(使用凹面镜)。   2、高倍镜:物象(大),视野(暗),看到细胞数目(少)。   低倍镜:物象(小),视野(亮),看到的细胞数目(多)。   3、物镜:(有)螺纹,镜筒越(长),放大倍数越大。   目镜:(无)螺纹,镜筒越(短),放大倍数越大。   放大倍数越大、视野范围越小、视野越暗、视野中细胞数目越少、每个细胞越大   放大倍数越小、视野范围越大、视野越亮、视野中细胞数目越多、每个细胞越小   4、放大倍数=物镜的放大倍数х目镜的放大倍数   5、一行细胞的数目变化可根据视野范围与放大倍数成反比   计算方法:个数×放大倍数的比例倒数=最后看到的细胞数   如:在目镜10×物镜10×的视野中有一行细胞,数目是20个,在目镜不换物镜换成40×,那么在视野中能看见多少个细胞?20×1/4=5   6、圆行视野范围细胞的数量的变化可根据视野范围与放大倍数的平方成反比计算   如:在目镜为10×物镜为10×的视野中看见布满的细胞数为20个,在目镜不换物镜换成20×,那么在视野中我们还能看见多少个细胞?20×(1/2)2=5   三、原核生物与真核生物主要类群:   原核生物:蓝藻,含有(叶绿素)和(藻蓝素),可进行光合作用,属自养型生物。细菌:(球菌,杆菌,螺旋菌,乳酸菌);放线菌:(链霉菌)支原体,衣原体,立克次氏体   真核生物:动物、植物、真菌:(青霉菌,酵母菌,蘑菇)等、   四、细胞学说   1、创立者:(施莱登,施旺)   2、细胞的发现者及命名者:英国科学家、罗伯特?虎克   3、内容要点:P10,共三点   4、揭示问题:揭示了(细胞统一性,和生物体结构的统一性)。

高中数学必修1知识点总结
提示:

高中数学必修1知识点总结

高中高一数学必修1各章知识点总结
第一章 集合与函数概念
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.
2、集合的中元素的三个特性:
1.元素的确定性; 2.元素的互异性; 3.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.
(4)集合元素的三个特性使集合本身具有了确定性和整体性.
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
2.集合的表示方法:列举法与描述法.
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R
关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A
列举法:把集合中的元素一一列举出来,然后用一个大括号括上.
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}
4、集合的分类:
1.有限集 含有有限个元素的集合
2.无限集 含有无限个元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合.
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.“相等”关系(5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
① 任何一个集合是它本身的子集.AíA
②真子集:如果AíB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)
③如果 AíB, BíC ,那么 AíC
④ 如果AíB 同时 BíA 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集.
三、集合的运算
1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.
记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,
A∪φ= A ,A∪B = B∪A.
4、全集与补集
(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作: CSA 即 CSA ={x | x?S且 x?A}
S

CsA

A

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用U来表示.
(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

二、函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.
定义域补充
能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.
(又注意:求出不等式组的解集即为函数的定义域.)
构成函数的三要素:定义域、对应关系和值域
再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关.相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)
(见课本21页相关例2)
值域补充
(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础.
3. 函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.
C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }
图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成.
(2) 画法
A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.
B、图象变换法(请参考必修4三角函数)
常用变换方法有三种,即平移变换、伸缩变换和对称变换
(3)作用:
1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路.提高解题的速度.
发现解题中的错误.
4.快去了解区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.
5.什么叫做映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射.记作“f:A B”
给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象
说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象.
常用的函数表示法及各自的优点:
1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.
注意啊:解析法:便于算出函数值.列表法:便于查出函数值.图象法:便于量出函数值
补充一:分段函数 (参见课本P24-25)
在定义域的不同部分上有不同的解析表达式的函数.在不同的范围里求函数值时必须把自变量代入相应的表达式.分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
补充二:复合函数
如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数.
例如: y=2sinX y=2cos(X2+1)
7.函数单调性
(1).增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1