中小学数学教学网 加入收藏  -  设为首页
您的位置:中小学数学教学网 > 历史 > 正文
【初中三角函数知识点归纳总结大全】:今天小数助手分享的内容是——初中三角函数初学入门知识,,,,,小数将详细内容整理如下: 初中三角函数初学入门知识
初中三角函数初学入门知识
提示:

初中三角函数初学入门知识

初中三角函数初学入门知识有: 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。 2、在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B)。 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。 5、正弦、余弦的增减性:当0°≤a≤90°时,sina随a的增大而增大,cosa随a的增大而减小。 6、正切、余切的增减性:当0°<a<90°时,tana随a的增大而增大,cota随a的增大而减小。 三角函数记忆口诀: “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n-(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。 以cos(π/2+a)=-sinc为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。

初中三角函数知识点总结
提示:

初中三角函数知识点总结

学好数学一定要掌握好三角函数公式,下面总结了数学三角函数重点知识点,希望能帮助大家学习数学。 三角函数概念 三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 三角函数半角公式 sin(A/2)=±√((1-cosA)/2) cos(A/2)=±√((1+cosA)/2) tan(A/2)=±√((1-cosA)/((1+cosA)) 三角函数倍角公式 Sin2A=2SinA*CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) 锐角三角函数定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin):对边比斜边,即sinA=a/c 余弦(cos):邻边比斜边,即cosA=b/c 正切(tan):对边比邻边,即tanA=a/b 余切(cot):邻边比对边,即cotA=b/a 正割(sec):斜边比邻边,即secA=c/b 余割(csc):斜边比对边,即cscA=c/a 三角函数万能公式 sinα=2tan(α/2)/[1tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 三角函数积化和差公式 sinα·cosβ=(1/2)[sin(αβ)sin(α-β)] cosα·sinβ=(1/2)[sin(αβ)-sin(α-β)] cosα·cosβ=(1/2)[cos(αβ)cos(α-β)] sinα·sinβ=-(1/2)[cos(αβ)-cos(α-β)] sinαsinβ=2sin[(αβ)/2]cos[(α-β)/2] sinα-sinβ=2cos[(αβ)/2]sin[(α-β)/2] cosαcosβ=2cos[(αβ)/2]cos[(α-β)/2] 积化和差的记忆口诀 积化和差得和差,余弦在后要相加;异名函数取正弦,正弦相乘取负号。 解释: (1)积化和差最后的结果是和或者差; (2)若两项相乘,后者为cos项,则积化和差的结果为两项相加;若不是,则结果为两项相减; (3)若两项相乘,一项为sin,另一项为cos,则积化和差的结果中都是sin项; (4)若两项相乘,两项均为sin,则积化和差的结果前面取负号。

初中数学三角函数所有重点知识点汇总
提示:

初中数学三角函数所有重点知识点汇总

三角函数在初中数学中占有很重的地位,下面我为大家总结了初中数学 三角函数 所有重点知识点汇总,仅供大家参考。


数学三角函数重点
1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方a2+b2=c2。

2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):

3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)

6、正弦、余弦的增减性:

当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小。

7、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。
锐角三角函数定义
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin):对边比斜边,即sinA=a/c

余弦(cos):邻边比斜边,即cosA=b/c

正切(tan):对边比邻边,即tanA=a/b

余切(cot):邻边比对边,即cotA=b/a

正割(sec):斜边比邻边,即secA=c/b

余割(csc):斜边比对边,即cscA=c/a
数学重点公式
sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA)

cot(A-B) = (cotAcotB+1)/(cotB-cotA)

tan2A = 2tanA/(1-tan² A)

Sin2A=2SinA•CosA

Cos2A = Cos^2 A--Sin² A =2Cos² A-1 =1-2sin^2 A

以上就是我为大家总结的初中 数学 三角函数所有重点知识点汇总,仅供参考,希望对大家有所帮助。

初中数学三角函数知识点总结
提示:

初中数学三角函数知识点总结

三角函数是一个比较难的部分,下面我就大家整理一下初中数学三角函数知识点总结 ,仅供参考。 锐角三角函数的定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。 正弦等于对边比斜边 余弦等于邻边比斜边 正切等于对边比邻边 余切等于邻边比对边 正割等于斜边比邻边 余割等于斜边比对边 正切与余切互为倒数 它的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 三角函数的公式 sin30°=1/2 sin45°=√2/2 sin60°=√3/2 cos30°=√3/2 cos45°=√2/2 cos60°=1/2 tan30°=√3/3 tan45°=1 tan60°=√3[1] cot30°=√3 cot45°=1 cot60°=√3/3 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB - ctgA+ctgBsin(A+B)/sinAsinB 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a=sin(2a+a)=sin2acosa+cos2asina 同角三角函数间的关系: 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 以上就是我为大家整理的初中数学三角函数知识点总结 。

初中数学三角函数知识点有哪些
提示:

初中数学三角函数知识点有哪些

初中 三角函数 学得好坏,直接影响高中三角函数的学习,下面是我整理的初中数学三角函数知识点,供参考。 初中三角函数的知识点有哪些 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方a2+b2=c2。 2、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 3、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。 4、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 5、正弦、余弦的增减性:当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小。 三角函数公式 初中三角函数两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 初中三角函数倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 初中三角函数三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 初中三角函数半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 初中数学学习方法与技巧 课前认真预习.预习的目的是为了能更好得听数学老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高. 课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.